Sequential Parameter Estimation of Time-Varying Non-Gaussian Autoregressive Processes

نویسندگان

  • Petar M. Djuric
  • Jayesh H. Kotecha
  • Fabien Esteve
  • Etienne Perret
چکیده

Parameter estimation of time-varying non-Gaussian autoregressive processes can be a highly nonlinear problem. The problem gets even more difficult if the functional form of the time variation of the process parameters is unknown. In this paper, we address parameter estimation of such processes by particle filtering, where posterior densities are approximated by sets of samples (particles) and particle weights. These sets are updated as new measurements become available using the principle of sequential importance sampling. From the samples and their weights we can compute a wide variety of estimates of the unknowns. In absence of exact modeling of the time variation of the process parameters, we exploit the concept of forgetting factors so that recent measurements affect current estimates more than older measurements. We investigate the performance of the proposed approach on autoregressive processes whose parameters change abruptly at unknown instants and with driving noises, which are Gaussian mixtures or Laplacian processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Sums and Residual Empirical Processes for Time-varying Processes

In the context of a time-varying AR-process we study both function indexed weighted sums, and sequential residual empirical processes. As for the latter it turns out that somewhat surprisingly, under appropriate assumptions, the non-parametric estimation of the parameter functions has a negligible asymptotic effect on the estimation of the error distribution. Function indexed weighted sum proce...

متن کامل

ESTIMATION OF TIME−VARYING AUTOREGRESSIVE SYMMETRIC ALPHA STABLE PROCESSES BY PARTICLE FILTERS (ThuAmOR5)

In the last decade alpha−stable distributions have become a standard model for impulsive data. Especially the linear symmetric alpha−stable processes have found applications in various fields. When the process parameters are time−invariant, various techniques are available for estimation. However, time−invariance is an important restriction given that in many communications applications channel...

متن کامل

Dynamic Bayesian smooth transition autoregressive models

In this paper we propose the Gaussian Dynamic Bayesian Smooth Transition Autoregressive (DBSTAR) models for nonlinear autoregressive time series processes as alternative to both the classical Smooth Transition Autoregressive (STAR) models of Chan and Tong (1986) and the computational Bayesian STAR (CBSTAR) models of Lopes and Salazar (2005). The DBSTAR models are autoregressive formulations of ...

متن کامل

Locally Stationary Long Memory Estimation

Spectral analysis of strongly dependent time series data has a long history in applications in a variety of fields, such as, e.g., telecommunication, meteorology, hydrology or, more recently, financial and economical data analysis. There exists a wide literature on parametrically or semi-parametrically modelling such processes using a long-memory parameter d, including more recent work on wavel...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2002  شماره 

صفحات  -

تاریخ انتشار 2002